Ant-Man : Is Miniaturisation Possible?

Standard

Ant-ManUnless you’re all living in some kind of hole I’m sure you know the newest addition to the Marvel movie universe has been released. If you haven’t been to see Ant-Man[1]Ant-Man through the ages yet then you should get off your computer and go. It’s an incredibly enjoyable film filled with action, humour and lots of science for me to pick apart!

For this installment of superhero science, I’ll kick off with a little Ant-Man history for anyone who hasn’t read the comics/seen the film. During the 60’s Dr. Hank Pym discovered and isolated a rare group of subatomic, extra dimensional particles; which, naturally, he named after himself. These “Pym Particles” could increase or decrease the size and mass of objects or living beings by shunting or adding it from a subatomic dimension. Combine this with a snazzy suit and helmet and voilĂ , a hero is born.

Unfortunately, there are huge fundamental issues with virtually everything about Dr. Hank Pym and his alter-ego; Ant-Man. Obviously these Pym Particles are rather far removed from reality and are Marvels attempt to explain their unsound science; which in the context of comic book and film is amazing. Life would be boring without the artistic license to create wonder through self evolved and explained science. The fact that writers actually take the time to create elaborate back stories and incorporate scientific loopholes makes me incredibly happy, it shows there is an understanding of the actual science. Sadly here in the real world, as far as we know, miniaturisation is impossible. Matter is made of atoms, atoms are not open to continuous adjustment in size. Their size is a fundamental length scale of nature, those babies ain’t budging. The reason for this is actually fairly interesting. Have you all seen those insanely inaccurate pictures of atoms and their orbitals? If you haven’t, fear not, I have provided one to help illustrate my explanation.

Inaccurate; but adequate for my point.

Inaccurate; but adequate for my point.

Every atom has a nucleus, and as you can see in that nucleus we have positively charged protons and uncharged neutrons. In addition, the atom has an equal number of negatively charged electrons. We’re all taught from a young age that opposites attract, so why don’t the electrons rush to meet the protons and cause the atom to collapse in on itself? The answer lies in the fact the electrons don’t stand still, they orbit the nucleus. There is still some attraction but the distance and speed of the electrons balance out the pull of the protons. Atoms are all roughly the same size, to within a factor of three, due to this delicate balancing act; that size being roughly a third of a nanometre. This is something we just cannot alter, as far as we currently know.

Since we can’t make the atoms themselves smaller, how about removing a large portion of them or compressing them? In terms of removing atoms, even if we could assume that the removal would be uniform, the impact on biological functions would be astronomical. Consider your brain. The fact that humans use 10% of their brain capacity is a complete myth. It doesn’t even make sense from an evolutionary standpoint because it promotes a waste of resources. If a human brain could function on smaller neurons, we would have evolved to do so. A neuron has a width of roughly one thousandth of a centimetre, be it ant or human. We are smarter than ants because on average we possess four hundred thousands times more neurons, not because our neurons are bigger. Remove say, 85% of your atoms and sure, you can make your cells 85% smaller. They will cease to function as intended though. As for compressing them.. messy. Very messy. Solid objects have atoms that are tightly packed together.[2]Simple comparison of states For sake of illustration think of marbles in a tube, yes there is a little space between the marbles but not enough for more marbles. Squeezing the tube does little to help compress them either, they’re solid it’s not budging. So what do you think shrinking the container with force will do? That’s right, deform and/or crush the marbles. Apply that to humans and there’s going to be a hell of a lot of cleaning to do.

Organic miniaturisation just isn’t possible unless something significant happens to alter the universe we live in. Which, personally, I’m not ruling out.

 

References   [ + ]